14 research outputs found

    Swine flu: lessons we need to learn from our global experience

    Get PDF
    There are important lessons to be learnt from the recent ‘Swine Flu’ pandemic. Before we call it a pandemic, we need to have appropriate trigger points that involve not only the spread of the virus but also its level of virulence. This was not done for H1N1 (swine flu). We need to ensure that we improve the techniques used in trying to decrease the spread of infection—both in the community and within our hospitals. This means improved infection control and hygiene, and the use of masks, alcohol hand rubs and so on. We also need to have a different approach to vaccines. Effective vaccines were produced only after the epidemic had passed and therefore had relatively little impact in preventing many infections. Mass population strategies involving vaccines and antivirals also misused large amounts of scarce medical resources

    Use of data linkage to improve communicable disease surveillance and control in Australia: Existing practices, barriers and enablers

    Get PDF
    Objectives: To review the use of data linkage by Australian state and territory communicable disease control units, and to identify barriers to and enablers of data linkage to inform communicable disease surveillance and control activities.Methods: Semi-structured telephone interviews were carried out with one key informant from communicable disease control units in all eight Australian states and territories between October 2017 and January 2018.Results: Key informants from all Australian states and territories participated in the interview. A variety of existing practices were identified, with few jurisdictions making systematic use of available data linkage infrastructure. Key barriers identified from the review included: a lack of perceived need; system factors; and resources. Existing regulatory tools enable data linkage to enhance communicable disease surveillance and control.Conclusions: We identified considerable variation in the use of data linkage to inform communicable disease surveillance and control activities between jurisdictions. We suggest that routinely collected, disparate data are systematically integrated into existing surveillance and response policy cycle to improve communicable disease prevention and control efforts.Implications for public health: Existing gaps in communicable disease surveillance data may affect prevention and control efforts. Data linkage is recognised as a valuable method to close surveillance gaps and should be used to enhance the value of publicly held health data

    Relationship between the population incidence of febrile convulsions in young children in Sydney, Australia and seasonal epidemics of influenza and respiratory syncytial virus, 2003-2010: a time series analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2010, intense focus was brought to bear on febrile convulsions in Australian children particularly in relation to influenza vaccination. Febrile convulsions are relatively common in infants and can lead to hospital admission and severe outcomes. We aimed to examine the relationships between the population incidence of febrile convulsions and influenza and respiratory syncytial virus (RSV) seasonal epidemics in children less than six years of age in Sydney Australia using routinely collected syndromic surveillance data and to assess the feasibility of using this data to predict increases in population rates of febrile convulsions.</p> <p>Methods</p> <p>Using two readily available sources of routinely collected administrative data; the NSW Emergency Department (ED) patient management database (1 January 2003 - 30 April 2010) and the Ambulance NSW dispatch database (1 July 2006 - 30 April 2010), we used semi-parametric generalized additive models (GAM) to determine the association between the population incidence rate of ED presentations and urgent ambulance dispatches for 'convulsions', and the population incidence rate of ED presentations for 'influenza-like illness' (ILI) and 'bronchiolitis' - proxy measures of influenza and RSV circulation, respectively.</p> <p>Results</p> <p>During the study period, when the weekly all-age population incidence of ED presentations for ILI increased by 1/100,000, the 0 to 6 year-old population incidence of ED presentations for convulsions increased by 6.7/100,000 (P < 0.0001) and that of ambulance calls for convulsions increased by 3.2/100,000 (P < 0.0001). The increase in convulsions occurred one week earlier relative to the ED increase in ILI. The relationship was weaker during the epidemic of pandemic (H1N1) 2009 influenza virus.</p> <p>When the 0 to 3 year-old population incidence of ED presentations for bronchiolitis increased by 1/100,000, the 0 to 6 year-old population incidence of ED presentations for convulsions increased by 0.01/100,000 (P < 0.01). We did not find a meaningful and statistically significant association between bronchiolitis and ambulance calls for convulsions.</p> <p>Conclusions</p> <p>Influenza seasonal epidemics are associated with a substantial and statistically significant increase in the population incidence of hospital attendances and ambulance dispatches for reported febrile convulsions in young children. Monitoring syndromic ED and ambulance data facilitates rapid surveillance of reported febrile convulsions at a population level.</p

    We should not be complacent about our population-based public health response to the first influenza pandemic of the 21st century

    Get PDF
    Background: More than a year after an influenza pandemic was declared in June 2009, the World Health Organization declared the pandemic to be over. Evaluations of the pandemic response are beginning to appear in the public domain. Discussion. We argue that, despite the enormous effort made to control the pandemic, it is now time to acknowledge that many of the population-based public health interventions may not have been well considered. Prior to the pandemic, there was limited scientific evidence to support border control measures. In particular no border screening measures would have detected prodromal or asymptomatic infections, and asymptomatic infections with pandemic influenza were common. School closures, when they were partial or of short duration, would not have interrupted spread of the virus in school-aged children, the group with the highest rate of infection worldwide. In most countries where they were available, neuraminidase inhibitors were not distributed quickly enough to have had an effect at the population level, although they will have benefited individuals, and prophylaxis within closed communities will have been effective. A pandemic specific vaccine will have protected the people who received it, although in most countries only a small minority was vaccinated, and often a small minority of those most at risk. The pandemic vaccine was generally not available early enough to have influenced the shape of the first pandemic wave and it is likely that any future pandemic vaccine manufactured using current technology will also be available too late, at least in one hemisphere. Summary. Border screening, school closure, widespread anti-viral prophylaxis and a pandemic-specific vaccine were unlikely to have been effective during a pandemic which was less severe than anticipated in the pandemic plans of many countries. These were cornerstones of the population-based public health response. Similar responses would be even less likely to be effective in a more severe pandemic. We agree with the recommendation from the World Health Organisation that pandemic preparedness plans need review
    corecore